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Starting point

Quantum mechanics is not just weird and difficult, it is also
powerful. Why? and is it related to the fact that quantum
mechanics exploits more degrees of freedom than classical
mechanics?



Physical Church Turing Thesis

Weak physical Church Turing Thesis
Everything that can be computed by a physical machine can be computed by a Turing
machine.

Strong physical Church Turing Thesis
Everything that can be efficiently computed by a physical machine can be efficiently
computed by a Turing machine.

Example: factoring
19209192 · · · 001︸ ︷︷ ︸

n digits

= p × q

Finding p and q can be done in time T

T ∝ exp
(

n1/3
)
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Physical Church Turing Thesis

ENS Lyon – Lego Turing machine ∼ 10−2flops ∼ Oak ridge – Summit ∼ 1017 flops

tLego = CLego exp
(

n1/3
)

tSummit = CSummit exp
(

n1/3
)



But...

I Turing Machines with best algorithm

t = C exp
(

n1/3
)

I Shor’s algorithm on quantum bits

t ∝ n3

Quantum Turing Machines are believed to break the strongest form of the
Church-Turing Thesis



Quantum advantage soon

Trapped ions
(ionQ, Maryland)

Superconducting circuits
(IBM, Rigetti, Google)

I in private, most near 50 qubits and < 1% error per gate
I on the cloud, IBM Tokyo 20 qubits, Rigetti Aspen 16 qubits
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Where is quantum power coming from?

A few naive ideas for why quantum computers are stricly more powerful:
1. Size of the Hilbert space (exponentially bigger)
2. Entanglement between qubits
3. Coherence? Other?

BUT
I Probability distributions P(i1, i2, · · · , iN) also have 2N coefficients for N bits
I ψ is not just big, it has something dynamical to it
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Understanding this power from quantum foundations?

Are there interpretations that give an easy understanding of the power of quantum
mechanics?



In Bohmian mechanics

“Particles move” (but the laws are sorta weird)

I Seems to be a mild modification of classical
mechanics

I Still “mechanical”, what else than a regular
Turing machine could we build out of particles?

I Naively leads to underestimate the power of
quantum computing
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In Many worlds

“The wave-function branches in measurement situations, in fact all the time, and the
sorta branches are real worlds”

I DAAayyym soo many worlds to compute
I Intuitively gives massive parallelism that should

allow huge speedups for NP-hard problems
I Naively overestimates the power of quantum

computing (only N →
√

N for bruteforce
algorithms like Grover search)
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In collapse models

“Wave-functions collapse, like for real, put rarely for small stuff, and often for big stuff”

I Seems to strongly constrain the computational
power of quantum mechanics

I Power of quantum computers should plateau
quickly

I But no (because of fault tolerance)
I Naively underestimates the power of quantum

computing
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Only 3 peculiar building blocks in all algorithms

Quantum Fourier Transform

Amplitude amplification
Phase estimation



More subtleties

1. Only an infinitely small fraction of the Hilbert space is reachable by a
sub-exponential set of gates

2. Clifford circuits construct non trivial massively entangled states but they are not
stronger than classical computing

Summary
Understanding why quantum mechanics is powerful is a hard problem, it’s not clear
what resources are used
I Not just a size argument
I Not just massive parallelism
I Not simply entanglement
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Question

How much of the Hilbert space is used by Nature in
1. standard matter (many-body problem)
2. matter tricked into thinking (measurement based quantum computing)

' How many degrees of freedom does Nature
exploit?



Many-body problem

Problem

Finding low energy states of

Ĥ =

N∑
k=1

ĥk

is hard because dim H ∝ DN

Possible solutions

I Perturbation theory
I Monte Carlo
I Bootstrap IR fixed point
I Variational optimization (e.g.

Mean Field, TCSA, tensor networks)
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Variational optimization

Generic (spin D/2) state ∈H :

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Exact variational optimization
To find the ground state:

|0〉 = min
|ψ〉∈H

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim H = DN



Variational optimization

Generic (spin D/2) state ∈H :

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN〉

Approx. variational
optimization
To find the ground state:

|0〉 = min
|ψ〉∈M

〈ψ|H |ψ〉
〈ψ|ψ〉

I dim M ∝ Poly(N) or fixed



An idea popular in many fields

I Mean field approximation (of which TNS are an extension)

ψ(x1, x2, · · · , xn) = ψ1(x1)ψ2(x2) · · ·ψn(xn)

I Special variational wave functions in Quantum chemistry (whole industry of
ansatz)

I Fully connected and convolutional neural networks used in machine learning



Interesting states are weakly entangled

Low energy state
|ψ〉 = |0〉 or |1〉 ...

Reduced density
matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|
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Typical states are strongly entangled

Random state
|ψ〉 = UHaar|trivial〉

Reduced density
matrix
ρ = trDc

[
|ψ〉〈ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Volume law

S ∝ |D|



Constructing weakly entangled states

1. Put auxiliary
maximally
entangled states
between sites

=

χ∑
j=1

|j〉|j〉

2. Map to initial Hilbert
space on each site

= A : C4χ → CD
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Tensor network states: definition
Why “tensor” network?

A : C4χ → Cd −→ Ai
j1,j2,j3,j4

|A〉 =

with tensor contractions on links

Optimization
Find best A for fixed χ (D × χ4 coeff.)

E0 ' min
A

〈A|Ĥ |A〉
〈A|A〉

for example go down ∂E
∂Ai

j1,j2,j3,j4
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Some facts
d = 1 spatial dimension

Theorems (colloquially)

1. For gapped H, tensor network states
|A〉 approximate well |0〉 with χ fixed

2. All |A〉 are ground states of gapped
H

d > 2 spatial dimension

Folklore
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2. Most |A〉 are ground states of
gapped H
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Uses and limitations

Uses today

I Understanding QCD (via
Hamiltonian lattice gauge theory)

I Understanding toy models of High
Tc superconductivity

Why it doesn’t solve everything
In d > 2 one can have:
I |A〉 known
I e.g. 〈A|Ôi Ôj |A〉 impossible to

compute exactly in general
I yet uncontroled approximations

seem to work with (arbitrary?)
precision for physical systems



Uses and limitations

Uses today

I Understanding QCD (via
Hamiltonian lattice gauge theory)

I Understanding toy models of High
Tc superconductivity

Why it doesn’t solve everything
In d > 2 one can have:
I |A〉 known
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Tensor network states

Summary
Compact parameterization of
quantum states (few degrees
of freedom) which can
approximate well low energy
states of quantum systems
with local interactions



Measurement based quantum computing

1. Take N qubits in a
quantum state |ψ〉

2. Measure one qubit,
get a result r

3. Measure a second
qubit with a
measurement
depending on r

4. Keep on for a while
and get a final
measurement result
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States needed for universal quantum computation

1

Problem
What is the computational power of “measurement based quantum computing”
depending on the initial state |ψ〉?

I If ψ is a product (no entanglement) χ = 1, no power
I If ψ is the cluster state, i.e. a tensor network with only χ = 2, MBQC has the

power of a general quantum Turing machine
I Some ψ that are far more entangled have no power
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Conclusion

In many instances, in intert and computing matter, Nature does seem to use very little
of the Hilbert space (tensor network states with small χ).

As a result, quantum mechanics is just a bit more difficult, and just a bit more
powerful than classical mechanics. This “just a bit” is not well understood.

Example of questions
I What quantum states are universal for measurement based quantum computing?
I Can all the translation invariant quantum systems we see in Nature ultimately be

efficiently classically simulated?
I Is there a formulation of quantum mechanics that makes its computational power

clearer from the start?


