How many degrees of freedom does Nature exploit?

Antoine Tilloy Max Planck Institute of Quantum Optics, Garching, Germany

Summer school *The Nature of Entropy* Saig, Germany July 27th, 2019 Alexander von Humboldt Stiftung/Foundation

Starting point

Quantum mechanics is not just **weird** and **difficult**, it is also **powerful**. Why? and is it related to the fact that quantum mechanics exploits more degrees of freedom than classical mechanics?

Physical Church Turing Thesis

Weak physical Church Turing Thesis

Everything that can be computed by a physical machine can be computed by a Turing machine.

Strong physical Church Turing Thesis

Everything that can be **efficiently** computed by a physical machine can be **efficiently** computed by a Turing machine.

Physical Church Turing Thesis

Weak physical Church Turing Thesis

Everything that can be computed by a physical machine can be computed by a Turing machine.

Strong physical Church Turing Thesis

Everything that can be **efficiently** computed by a physical machine can be **efficiently** computed by a Turing machine.

Example: factoring

$$\underbrace{19209192\cdots001}_{n \text{ digits}} = p \times q$$

Finding p and q can be done in time T

 $T \propto \exp\left(n^{1/3}\right)$

Physical Church Turing Thesis

ENS Lyon – Lego Turing machine $\sim 10^{-2} flops ~\sim~$ Oak ridge – Summit $\sim 10^{17}$ flops

$$t_{\text{Lego}} = C_{\text{Lego}} \exp\left(n^{1/3}\right)$$
$$t_{\text{Summit}} = C_{\text{Summit}} \exp\left(n^{1/3}\right)$$

But...

Turing Machines with best algorithm

$$t = C \exp\left(n^{1/3}\right)$$

Shor's algorithm on quantum bits

 $t \propto n^3$

Quantum Turing Machines are believed to break the strongest form of the Church-Turing Thesis

Quantum advantage soon

Trapped ions (ionQ, Maryland)

Superconducting circuits (IBM, Rigetti, Google)

Quantum advantage soon

Trapped ions (ionQ, Maryland)

Superconducting circuits (IBM, Rigetti, Google)

- \blacktriangleright in private, most near 50 qubits and <1% error per gate
- ▶ on the cloud, IBM Tokyo 20 qubits, Rigetti Aspen 16 qubits

Where is quantum power coming from?

A few naive ideas for why quantum computers are stricly more powerful:

- 1. Size of the Hilbert space (exponentially bigger)
- 2. Entanglement between qubits
- 3. Coherence? Other?

Where is quantum power coming from?

A few naive ideas for why quantum computers are stricly more powerful:

- 1. Size of the Hilbert space (exponentially bigger)
- 2. Entanglement between qubits
- 3. Coherence? Other?

BUT

- ▶ Probability distributions $\mathbb{P}(i_1, i_2, \cdots, i_N)$ also have 2^N coefficients for N bits
- \blacktriangleright ψ is not just big, it has something dynamical to it

Understanding this power from quantum foundations?

Are there interpretations that give an easy understanding of the power of quantum mechanics?

"Particles move" (but the laws are sorta weird)

"Particles move" (but the laws are sorta weird)

Seems to be a mild modification of classical mechanics

"Particles move" (but the laws are sorta weird)

- Seems to be a mild modification of classical mechanics
- Still "mechanical", what else than a regular Turing machine could we build out of particles?

"Particles move" (but the laws are sorta weird)

- Seems to be a mild modification of classical mechanics
- Still "mechanical", what else than a regular Turing machine could we build out of particles?
- Naively leads to underestimate the power of quantum computing

In Many worlds

"The wave-function branches in measurement situations, in fact all the time, and the sorta branches are real worlds"

In Many worlds

"The wave-function branches in measurement situations, in fact all the time, and the sorta branches are real worlds"

- DAAayyym soo many worlds to compute
- Intuitively gives massive parallelism that should allow huge speedups for NP-hard problems
- ► Naively overestimates the power of quantum computing (only N → √N for bruteforce algorithms like Grover search)

In collapse models

"Wave-functions collapse, like for real, put rarely for small stuff, and often for big stuff"

"Wave-functions collapse, like for real, put rarely for small stuff, and often for big stuff"

- Seems to strongly constrain the computational power of quantum mechanics
- Power of quantum computers should plateau quickly
- But no (because of fault tolerance)
- Naively underestimates the power of quantum computing

Only 3 peculiar building blocks in all algorithms

Amplitude amplification

 $|0\rangle$ H \checkmark H $|0\rangle$ QFT^+ H $|0\rangle$ $|0\rangle$ H \hat{V}_k \hat{V}_k^2 \hat{V}_k^4 \hat{V}_k^8 $|\psi\rangle$ \checkmark

Phase estimation

More subtleties

- 1. Only an **infinitely small** fraction of the Hilbert space is reachable by a sub-exponential set of gates
- 2. Clifford circuits construct non trivial massively entangled states **but** they are not stronger than classical computing

More subtleties

- 1. Only an **infinitely small** fraction of the Hilbert space is reachable by a sub-exponential set of gates
- 2. Clifford circuits construct non trivial massively entangled states **but** they are not stronger than classical computing

Summary

Understanding why quantum mechanics is powerful is a hard problem, it's not clear what resources are used

- Not just a size argument
- Not just massive parallelism
- Not simply entanglement

Question

How much of the Hilbert space is used by Nature in

- 1. standard matter (many-body problem)
- 2. matter tricked into thinking (measurement based quantum computing)

 \simeq How many degrees of freedom does Nature exploit?

Many-body problem

Problem

Finding low energy states of

 $\hat{H} = \sum_{k=1}^{N} \hat{h}_k$

is hard because dim $\mathscr{H} \propto D^N$

Many-body problem

Problem

Finding low energy states of

 $\hat{H} = \sum_{k=1}^{N} \hat{h}_k$

is hard because dim $\mathscr{H} \propto D^N$

Possible solutions

- Perturbation theory
- Monte Carlo
- Bootstrap IR fixed point
- Variational optimization (e.g. Mean Field, TCSA, tensor networks)

Variational optimization

Generic (spin D/2) state $\in \mathscr{H}$:

 $|\psi\rangle = \sum_{i_1,i_2,\cdots,i_n} c_{i_1,i_2,\cdots,i_N} |i_1,\cdots,i_N\rangle$

Exact variational optimization To find the ground state:

 $|0
angle = \min_{|\psi
angle \in \mathscr{H}} rac{\langle \psi | H | \psi
angle}{\langle \psi | \psi
angle}$

• dim $\mathscr{H} = D^N$

Variational optimization

Generic (spin D/2) state $\in \mathscr{H}$:

 $|\psi\rangle = \sum_{i_1,i_2,\cdots,i_n} c_{i_1,i_2,\cdots,i_N} |i_1,\cdots,i_N\rangle$

Approx. variational optimization To find the ground state: $|0\rangle = \min_{|\psi\rangle \in \mathscr{M}} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$ $\blacktriangleright \dim \mathscr{M} \propto \operatorname{Poly}(N) \text{ or fixed}$

An idea popular in many fields

Mean field approximation (of which TNS are an extension)

```
\psi(x_1, x_2, \cdots, x_n) = \psi_1(x_1) \psi_2(x_2) \cdots \psi_n(x_n)
```

- Special variational wave functions in Quantum chemistry (whole industry of ansatz)
- Fully connected and convolutional neural networks used in machine learning

Interesting states are weakly entangled

Interesting states are weakly entangled

Typical states are strongly entangled

Constructing weakly entangled states

Constructing weakly entangled states

1. Put auxiliary maximally entangled states between sites

Constructing weakly entangled states

1. Put auxiliary maximally entangled states between sites

2. Map to initial Hilbert space on each site

$$= A : \mathbb{C}^{4\chi} \to \mathbb{C}^{D}$$

Tensor network states: definition

with tensor contractions on links

Tensor network states: definition

Optimization

Find best *A* for fixed χ ($D \times \chi^4$ coeff.)

$$E_0 \simeq \min_A rac{\langle A | \hat{H} | A
angle}{\langle A | A
angle}$$

for example go down $\frac{\partial E}{\partial A_{j_1,j_2,j_3}^i}$

with tensor contractions on links

Some facts

d = 1 spatial dimension

Theorems (colloquially)

- 1. For gapped *H*, tensor network states $|A\rangle$ approximate well $|0\rangle$ with χ fixed
- **2.** All $|A\rangle$ are ground states of gapped H

Some facts

d = 1 spatial dimension

$d \ge 2$ spatial dimension

Theorems (colloquially)

- 1. For gapped *H*, tensor network states $|A\rangle$ approximate well $|0\rangle$ with χ fixed
- 2. All $|A\rangle$ are ground states of gapped H

Folklore

- 1. For gapped *H*, tensor network states $|A\rangle$ approximate well $|0\rangle$ with χ fixed
- **2.** Most $|A\rangle$ are ground states of gapped *H*

Uses and limitations

Uses today

- Understanding QCD (via Hamiltonian lattice gauge theory)
- Understanding toy models of High *T_c* superconductivity

Uses and limitations

Uses today

- Understanding QCD (via Hamiltonian lattice gauge theory)
- Understanding toy models of High *T_c* superconductivity

Why it doesn't solve everything

- In $d \ge 2$ one can have:
 - \blacktriangleright $|A\rangle$ known
 - ► *e.g.* $\langle A | \hat{\bigcirc}_i \hat{\oslash}_j | A \rangle$ impossible to compute exactly in general
 - yet uncontroled approximations seem to work with (arbitrary?) precision for physical systems

Tensor network states

Summary

Compact parameterization of quantum states (few degrees of freedom) which can approximate well low energy states of quantum systems with local interactions

1. Take *N* qubits in a quantum state $|\psi\rangle$

- 1. Take N qubits in a quantum state $|\psi\rangle$
- 2. Measure one qubit, get a result *r*

- 1. Take N qubits in a quantum state $|\psi\rangle$
- 2. Measure one qubit, get a result *r*
- Measure a second qubit with a measurement depending on r

- 1. Take *N* qubits in a quantum state $|\psi\rangle$
- 2. Measure one qubit, get a result *r*
- Measure a second qubit with a measurement depending on r
- **4.** Keep on for a while and get a final measurement result

Problem

What is the computational power of "measurement based quantum computing" depending on the initial state $|\psi\rangle?$

Problem

What is the computational power of "measurement based quantum computing" depending on the initial state $|\psi\rangle?$

• If ψ is a product (no entanglement) $\chi = 1$, no power

Problem

What is the computational power of "measurement based quantum computing" depending on the initial state $|\psi\rangle?$

- If ψ is a product (no entanglement) $\chi = 1$, no power
- If ψ is the cluster state, i.e. a tensor network with only $\chi = 2$, MBQC has the power of a general quantum Turing machine

Problem

What is the computational power of "measurement based quantum computing" depending on the initial state $|\psi\rangle?$

- If ψ is a product (no entanglement) $\chi = 1$, no power
- If ψ is the cluster state, i.e. a tensor network with only $\chi = 2$, MBQC has the power of a general quantum Turing machine
- \blacktriangleright Some ψ that are far more entangled have no power

Conclusion

In many instances, in intert and computing matter, Nature does seem to use very little of the Hilbert space (tensor network states with small χ).

As a result, quantum mechanics is just a bit more difficult, and just a bit more powerful than classical mechanics. This "just a bit" is not well understood.

Example of questions

- ▶ What quantum states are universal for measurement based quantum computing?
- Can all the translation invariant quantum systems we see in Nature ultimately be efficiently classically simulated?
- Is there a formulation of quantum mechanics that makes its computational power clearer from the start?